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GREEN'S FUNCTIONS FOR THE PARALLEL-WALL WAVEGUIDE 

by F. J.  Tischer 

Summary - A method i s  presented for the determination of the two-dimensional Green's 

functions for the scalar wave equation for a region between two parallel lines. These 

functions are useful for the consideration of  electromagnetic para1 lel-wall waveguides. 

The approach i s  based on using electromagnetic boundary conditions. w- 
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GREEN'S FUNCTIONS FOR THE PARALLEL-WALL WAVEGUIDE 

by F. J. Tischer 

Int roduct ion 

In considering the wave propagation in  waveguides, Green's functions are 

very useful for the determination of the distribution of the field components resulting 

from excitation by arbitrary sources. The Green's functions represent the field dis- 

tributions resulting from excitation by point sources. A special case of a waveguide 

i s  the parallel-wall guide. Morse and Feshbach have shown the derivation of the 

Green's function for this type of waveguide by the method of electromagnetic images*. 

In the following considerations, a different method using electromagnetic boundary 

conditions i s  presented. 

Original Conditions 

A waveguide consisting of a pair of perfectly conducting walls i s  assumed 

with the walls parallel to the xz-plane and extending to infinity. The walls are lo- 

cated at y = 0 and y = d. The waves propagate between the walls in the direction 

of the z-axis. The corresponding geometrical conditions are indicated in Fig. 1 .  

The waves propagating along such a structure can be considered generally as a 

superposition of orthogonal transverse electric (TE) and transverse magnetic (TM) 

wave modes. The components of the field intensities for these modes can be derived 

from the longitudinal components. In the absence of sources, these components 

satisfy the following wave equations: 

2 2 TE (E SO) :  v H + q H =O, 
Z z 2 

2 2 TM (H EO) :  E + q E =O, 
2 z Z 

* P. M. Morse and H. Feshbach: Methods of Theoretical Physics. McGraw-Hill, 
New York, N. Y., 1953, pp. 812-818. 
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where < = k2 - k The quantifies k and k are the free-space and the longitudi- 

o z  0 Z 

nal pmpagation ~0mta+c, (k 

ponding to  the geometrical configuration indicated in  the figure are 

2rr/Xo, k = 2m/X? The bsundaay condifiors coFres- 
0 z 9 

The general transverse distributions H - ( x f y )  and E - (xly) which satisfy the 
L 

*ave equations [Eqs. ( l ) ]  and the boundary conditions 

a> + i kxx HI = t a cosk y e -  
Z n n n -0 

and 

L 

[ Eqs (2) I have the form 

a, 
+ i kxx E = 1 a’ sink y e -  

Z n n B 

n -0 

where k = n.rr/d. In the presence of SOUBC~S in the yz-plane, the amplitudes a 

and a’ depend 00 the distribution of these sources which are assumed to have infi- 

n;?e extension arld to be uniform i v  the z-di:ection. 

n n 

n 

Mehod of Derivation 
-----1 

The approach followed in  deRiving h e  Green’s fundions i s  based on the 

follo&ing concept. First, *he field intendies are determined for the Regions I and 

IS 

line curresf i o  assumed at the position y a5 a source. The line current i s  magnetic 

in  she case of %E and e(ert5c for %M waves. The boundary conditions for the 

various field components at x = 0 yield then relagionships be*ween the arnplttudes 

of  tbe wave elements [Eqj.  (331 in Region 1 and II and relationships for their am- 

plitudes depending on the structure of the source. 

These regions are located above and below the yz-plane in  which an infinite 

0 

TE Waves Excited by a Line Source 

The scalar Green’s function i s  the solution of  the wave equation in the 

It satisfies the nonhomogeneous wave equa- 
O R  yo* 

presence of a point source at x 

tion 
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2 v2 G + '1 G = -  S(X - x0) S ( y -  yo)' 

The corresponding wave equation for H i s  
Z 

where the source i s  represented by an infinite magnetic-line currenf 1 

parison of Eqs. (4) and (5) indicates that after normalizajion, I 

ape interreSated by 

Com- 

L- 1 I G and H 
zm 

Z zm 

With the source a% x = 0, the distribution of H in Region I above the y-axis 

becomes 
0 Z 

00 I - i k,x H = t a cosk y e  
n n n =z 0 Z (7) 

The tranjvene componen% of *he magnetic ard electric field intensities can be 

derived from M by the familiar relations 
Z 

- - 
where v,, = i 

the electric field infensity becomes 

a/& = i a/ay. Using these equations, the y-component of 
X Y 

00 "Pk, -i k,x - a cosk y e  2 n  n 
E' = t 

'1 Y n = 0  
(9) 

The corresponding equations in Region I I  are 
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dD I !  kxx 
z n n 

H = 1 b cosk y e  I 

n = O  

Next! the boundary conditions in the yz-plane are cpplied. These condi- 

tions are (Morse and Feshbach) 

x =o: $1 la)  

where d 

Regions I and $ I  at x = 0. The first boundary condition, Eq. (1  la), yields after 

substituting of Eqs. (7) and (loa) into (1 la)  as a relationship between the ampli- 

tudes of the waves in Region I and B B  

i s  the magnetic surface-current density in fhe z-direction between the 
m 

In the second boundary condition, Eq. (1 lb),  a seyies deve1opmeP.c i s  introduced 

for the delta function, 

L 
~ ( Y - Y  ) 1 I-  COS^ y cosk y 

0 d n n o '  
n -0 

so that, substituting Eqs, (9) and (1%) info (lib), 

i s  obtained, The distribution of H hence becomes 
2 
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The corresponding Green's function a% an arbitrary position M i s  then 
0 

where 

k -  ~- 7 / :  - k2 n 
x 

TM Waves Excited by a Line Source 

I 

The Green's fuwt ion foe ahis case satisfies the wave quat iopK Eq (4) 
The boundary conditions at the walls are G(xxgO) =-. Gil>e,d) = 0, The cor:esponding 

nonhomogeneous wave equation for the longitudinal componenr of the electric 

field intensity i s  

where 1 

sectional plane, The Green's fun&-ion G ard E 

i s  the electric line cur-en' which represerfs a pain? source in the c'oss- 
ze 

are iq!e*related by 
2 

Assuming a source at x = 0, the dir-'ributioons of the electric field ir,t.ensi- 

ties in the Regions I and I &  are 

The tramverse components of %e fieId:frengtR,s are given by 
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and 

These sela'ionships yield for the y-components of the rnagnefic field inte~sify 

The boundary conditions in  the yz-plane are 

x = 0: !I E' - E 2 . 0 ,  
Z z 

(1 9a) 

1s The corre5pond;ng Green's function for a point source as x o8  YO 
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Solution for Arbitrary Exciaation - 

The Eqs. (14) and (21) for +he Green's functions can be used for solving 

the wave equation for arbitrary excitation 

for an arbitrary distaibutiorl 06 the sources has the fotm 

The nonhomogeneous wave equation 

Combination with the corresponding wave equation for the Green'2 function [ Eq 

j4)j and simpie manipuiation yieid 

Both functions u and G must satisfy the came boundary condifions at y = 0 and 

y Ed.  



Appendix 

Source a t  Arbitrary Position 

[ f  the source i s  located at a posrtiog x the Green's fi,wtfops have charlged 
O f  

accordingly. Under these conditions, x becomes a tmrlsfomed coordinate x5 

x' = x - x . For the Region I ,  the exponential function i n  Eq 

e - ikxb-xo) . For the Region 11,  the corresponding wave function i s  e 

Since x i s  smaller than x it cap be written 

where 

13 has then the form 
0 

-I- i kxx' + i k, (x -xo ) = e  

0 ,  

+ ikxb-xo) - - I x-xo I e 

The Green's function valid for both regions can the? be expressed i r 5  the form as ;<di- 

cated in  Eq. 14. 
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Fig, 1 - Parallelwall  region. 


